EZ 3455 Real -Time Digital Signal Processing Lab Prof Brian Li Evans All-Pass..Fitters

- An all-pass filter has a magnitude response that is constant for all frequencies. The phase response may or may not be linear.
* A simple all-pass filter is the gain, ie. $y(t)=g x(t)$ or $y[n]=g \times[n]$ where x is the input and y is the output. Impulse response is $h(t)=g \delta(t)$ or $h[n]=g \delta[n]$. The frequency response is simply equal to g.
- Another simple all-pass filter is the deal delay, ie. $y(t)=x\left(t-t_{0}\right)$ or $y[n]=x\left[n-n_{0}\right]$ where t_{0} and n_{0} are constants. Impulse response is $h(t)=\delta\left(t-t_{0}\right)$ or $h[n]=\delta\left[n-n_{0}\right]$. The frequency response. is $H_{f \times e q}(f)=e^{-j 2 \pi f t_{0}}$ or $H_{f r e q}(\omega)=e^{-j \omega n_{0}}$. The magnitude response is equal to one in etherequse. Phase response is linear.
- A cascade of a gain and an ideal delay also has an all-pass response.
- A frrst-order IIR filter with one real-valued porte and one real-vilued zero is all-pass if the zerollocation is equal to the reciprocal of the pole location:

$$
H(z)=\frac{z-\frac{1}{r}}{z-r} \rightarrow H_{\text {freq }}(\omega)=\frac{e^{j \omega}-\frac{1}{r}}{e^{j \omega}-r}
$$

assuming that $|r|<1$ for asymptotic stability. Magnitude response is

$$
\begin{aligned}
& \text { ming that }|r|<1 \text { for asymptotic stability. } \\
& \qquad \begin{aligned}
& \mid H_{f r e q}(\omega)=\left|\frac{e^{j \omega}-\frac{1}{r}}{e^{j \omega}-r}\right|=\frac{\left|e^{j \omega}-\frac{1}{r}\right|}{\left|e^{j \omega}-r\right|} \\
&|(\cos \omega-a)+j \sin \omega|=\sqrt{(\cos }
\end{aligned}
\end{aligned}
$$

Here, $\left|e^{j \omega-a \mid}=|(\cos \omega-a)+j \sin \omega|=\sqrt{(\cos \omega-a)^{2}+\sin ^{2} \omega}\right.$. $=\sqrt{\cos ^{2} \omega-2 a \cos \omega+a^{2}+\sin ^{2} \omega}=\sqrt{a^{2}-2 a \cos \omega+1}$.

$$
\left|H_{f_{r} q}(\omega)\right|=\frac{\sqrt{\frac{1}{r^{2}}-\frac{2}{r} \cos \omega+1}}{\sqrt{r^{2}-2 r \cos \omega+1}}=\frac{\sqrt{\frac{1}{r^{2}}\left(r^{2}-2 r \cos \omega+1\right)}}{\sqrt{r^{2}-2 r \cos \omega+1}}=\frac{1}{|r|}
$$

- A frist-order IIR filter with one complex-valued pole and one complex-valued zero is all-pass if the zero radius is the reciprocal to the pole radius and if the angles are the same:

$$
H(z)=\frac{z-\frac{1}{r_{0}} e^{j \omega_{0}}}{z-r_{0} e^{j \omega_{0}}} \Rightarrow H_{\text {freq }}(\omega)=\frac{e^{j \omega}-\frac{1}{r_{0}} e^{j \omega_{0}}}{e^{j \omega}-r_{0} e^{j \omega_{0}}}
$$

assuming that $r_{0}<1$ for asymptotic stability. The magnitude response is

$$
\begin{aligned}
& \text { nitude response is } \\
& \qquad H_{\text {freq }}(\omega) \left\lvert\,=\frac{\left|e^{j \omega}-\frac{1}{r_{0}} e^{j \omega_{0}}\right|}{\left|e^{j \omega}-r_{0} e^{j \omega_{0}}\right|}\right. \\
& \quad\left|e^{j \omega}-(a+j b)\right|=\mid(\cos \omega-
\end{aligned}
$$

Here, $\left|e^{j \omega}-(a+j b)\right|=|(\cos \omega-a)+j(\sin \omega-b)|$

$$
\begin{aligned}
& =\sqrt{(\cos \omega-a)^{2}+(\sin \omega-b)^{2}} \\
& =\sqrt{\cos ^{2} \omega-2 a \cos \omega+a^{2}+\sin ^{2} \omega-2 b \sin \omega+b^{2}} \\
& =\sqrt{\left(a^{2}+b^{2}\right)-2 \sqrt{a^{2}+b^{2}} \cos (\omega+\theta)+1}
\end{aligned}
$$

where $\theta=\arctan \left(-\frac{b}{a}\right)$.

$$
\begin{aligned}
& \text { ere } \theta=\arctan \left(-\frac{a}{a}\right) \\
& \left|H_{\text {freq }}(\omega)\right|=\frac{\sqrt{\frac{1}{r_{0}^{2}}-\frac{2}{r_{0}} \cos (\omega+\theta)+1}}{\sqrt{r_{0}^{2}-2 r_{0} \cos (\omega+\phi)+1}}
\end{aligned}
$$

where $\theta=\arctan \left(-\frac{\frac{1}{r_{0}} \sin \omega_{0}}{\frac{1}{r_{0}} \cos \omega_{0}}\right)=-\omega_{0}$

$$
\phi=\arctan \left(-\frac{r_{0} \sin \omega_{0}}{r_{0} \cos \omega_{0}}\right)=-\omega_{0}
$$

Therefore,

$$
\begin{aligned}
& \text { erefore, } \\
& \begin{aligned}
\left|H_{f_{r} q}(\omega)\right| & =\frac{\sqrt{\frac{1}{r_{0}^{2}}-\frac{2}{r_{0}} \cos \left(\omega-\omega_{0}\right)+1}}{\sqrt{r_{0}{ }^{2}-2 r_{0} \cos \left(\omega-\omega_{0}\right)+1}} \\
& =\frac{\sqrt{\frac{1}{r_{0}{ }^{2}}\left(r_{0}{ }^{2}-2 r_{0} \cos \left(\omega-\omega_{0}\right)+1\right)}}{\sqrt{r_{0}{ }^{2}-2 r_{0} \cos \left(\omega-\omega_{0}\right)+1}}=\frac{1}{r_{0}}
\end{aligned}
\end{aligned}
$$

